

A³W: Language Anchor-Guided Method for Robust Noisy Domain Generalization

Authors: Zilin Dai, Lehong Wang, Fangzhou Lin, Yidong Wang, Zhigang Li, Kazunori D Yamada, Ziming Zhang, Wang Lu*

Advisor: Ziming Zhang

Introduction

class = elephant

Problem & Challenge

- **Domain Shift**: Training and test distributions differ, leading to performance drops of ML models.
- *Intra-Class Variability*: Changes in lighting and backgrounds challenge invariant feature extraction.
- *Spurious Correlations*: Models can latch onto domain-specific cues.
- *Label Noise*: High mislabeling (8–38.5%) in real-world datasets further degrades performance.
- Current DG Limitations: Struggle with noisy data and weak domain-invariant signals.

Key Contributions

- Developed an iterative update algorithm that aligns semantic and image features for robust generalization under noise.
- Introduced **NLP anchors** from large-scale language model for *domain-invariant constraints*.
- Proposed a **weighted loss** that adjusts sample's contribution by its NLP *anchor similarity*.
- Demonstrated **superior performance** on multiple domain generalization benchmarks with *injected noise*.

Algorithm 1 Training Outline for A^3W

class = dog

Methodology

NLP Anchor Setting

- Computing semantic anchors using *CLIP* as text encoder. The anchors are then stacked into an anchor matrix and are used to initialize a set of *linear projectors* that map image features into the same semantic space.

Main Model Update

- Update the featurizer and

Classifier to improve classifi
14: Upo end if

Require: Dataset \mathcal{D} with classes $\{1,\ldots,C\}$, hyperparameters λ, τ, \dots 1: Initialize: featurizer $f(\cdot)$, classifier $g(\cdot)$, empty mapping layers $\{Proj_1, \ldots, Proj_c\}$ 2: Set NLP anchors: $\{a_1, \ldots, a_c\}$ via CLIP) 3: Warm-up Training: 4: **for** 10% of steps **do** Sample mini-batch $\{(\mathbf{x_i}, y_i)\}$ from \mathcal{D} Update parameters with $\mathcal{L}_{\text{warm-up}}$ 7: end for 8: Main Training: 9: for step = 1 to n_{steps} do Sample mini-batch $\{(\mathbf{x_i}, y_i)\}$ from \mathcal{D} if condition for maplayer update is met then Update mapping layers with \mathcal{L} Update featurizer and classifier and layers with \mathcal{L} end if

cation performance using the *combined loss* of the weighted alignment and cross-entropy. During inference, the *exponential moving average* (EMA) network, initialized as a deep copy of the primary network, is employed to produce predictions.

Mapping Layer Optimization

- Each class is assigned a trainable mapping layer, which projects feature embeddings into the NLP anchor space. The mapping layers are *updated iteratively* using our weighted loss function.

Ablation

- *NLP Anchor Alignment*:

Removing semantic anchors deprives the model of critical external guidance → forces the feature extractor to rely solely on internal cues.

Adaptive Weighting: Switching from dynamic, softmax-based weights to uniform weighting
 disrupts the model's ability to prioritize cleaner samples.

Discussion and Futrue Work

- *Computation Cost*: Extra mapping layers and cosine loss add ~10% runtime → scaling to many classes is challenging.
- **Dynamic Anchors**: Replace fixed text embeddings with adaptive, evolving anchors to enhance visual-text alignment.
- **Domain-Aware Prompts**: Tailor text descriptions to specific domain characteristics for improved adaptation.

Reference: Dai, Zilin, et al. "A Language Anchor-Guided Method for Robust Noisy Domain Generalization." arXiv preprint arXiv:2503.17211 (2025). https://arxiv.org/abs/2503.17211.

